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Electron paramagnetic resonance (EPR) pulsed saturation recovery (pSR) measurements of spin-lattice
relaxation rates have been made on nitroxide-containing fatty acids embedded in lipid bilayers by Hyde and
co-workers. The data have been collected for a number of spin-labeled fatty acids at several microwave
spectrometer frequencies (from 2 to 35 GHz). We compare these spin-lattice relaxation rates to those predicted
by the Redfield theory incorporating several mechanisms. The dominant relaxation mechanism at low
spectrometer frequencies is the electron-nuclear dipolar (END) process, with spin rotation (SR), chemical
shift anisotropy (CSA), and a generalized spin diffusion (GSD) mechanism all contributing. The use of a
wide range of spectrometer frequencies makes clear that the dynamics cannot be modeled adequately by
rigid-body isotropic rotational motion. The dynamics of rigid-body anisotropic rotational motion is sufficient
to explain the experimental relaxation rates within the experimental error. More refined models of the motion
could have been considered, and our analysis does not rule them out. However, the results demonstrate that
measurements at only two suitably chosen spectrometer frequencies are sufficient to distinguish anisotropic
from isotropic motion. The results presented demonstrate that the principal mechanisms responsible for
anisotropically driven spin-lattice relaxation are well understood in the liquids regime.

I. Introduction

The recent publication of electron spin-lattice relaxation
times (Tle) of nitroxide spin-labeled stearic acid lipids (SASL)
measured by the pulsed saturation recovery (pSR) technique at
frequencies from 2.54 to 34.6 GHz by Hyde and co-workers is
the motivation for this theoretical investigation1 (referred to
hereafter as HYSCRF).

These authors found the following: (i) TheTle values of small
water-soluble spin probes (common nitroxides Tempone and
CTPO) increase linearly with the microwave frequency through-
out the full range of available frequencies. (ii) TheTle values
of four commonly used lipid probes (nitroxide spin-labeled
doxylstearic acid (SASL) and cholestane (CSL)) also increase
with the frequency when incorporated in lipid bilayers. However,
the relaxation times of the lipid-based probes have a nonlinear
dependence on the microwave frequency in the higher frequency
regime. (iii) The contribution of dissolved molecular oxygen
to the relaxation rates is independent of the microwave
frequency. (iv) TheTle values of 15N-containing labels are
always somewhat longer than those of14N labels.

HYSCRF did not attempt to fit their multifrequency data to
any model. We now present the details of a previously reported,
but unpublished, theory that explains all of the features of spin-
lattice relaxation noted above.2 The data on isotropically moving
spin labels (Tempol and CTPO) as well as the oxygen-collision
relaxation results of HYSCRF are explained elsewhere3,4 This
paper focuses on providing an explanation of the relaxation rates
of the lipid probes.

The prediction of relaxation rates requires that a dynamical

process modulates the spin Hamiltonian. The effects of dynamics
are included in the Redfield relaxation theory through spectral
density functions that describe the fluctuations of the lattice.4

We considered only two very simple dynamic processes:
isotropic and anisotropic rigid-body rotational reorientation. The
analysis of the spin-lattice relaxation rates relies primarily on
the electron-nuclear dipolar (END) coupling between the
electron and the nitroxide’s nitrogen nucleus on the spin label.
In addition to the END mechanism, we considered other
mechanisms that contribute to the total spin-lattice relaxation
of the electron.3 (i) The chemical shift anisotropy (CSA)
mechanism: the relaxation rates predicted from this mechanism
are small relative to the END mechanism for processes in the
dynamic and frequency ranges considered here, except at high
microwave frequencies. At high microwave frequencies, both
CSA and END rates are small, however. (ii) The spin-rotation
(SR) mechanism: this mechanism is important for short
correlation times, especially at high microwave frequencies. (iii)
The generalized spin-diffusion mechanism (GSD): this semiem-
pirical mechanism contributes at all frequencies and becomes
important at the higher spectrometer frequencies where the other
mechanisms drop out. It is a very general mechanism, with a
weak power-law dependence upon the correlation time and the
spectrometer frequency.3 Recently, others5 have demonstrated
that the rotation of methyl groups on nitroxides may account
for a portion of this mechanism. The general insensitivity of
the GSD mechanism to correlation time allows for the rate to
be replaced by a constant without much loss of accuracy.

Nitroxide spin probes are very useful in biological applica-
tions because they are sensitive to both molecular dynamics
and to the composition of other paramagnetic species in the
immediate environment of the spin probe. The direct determi-
nation of spin-lattice relaxation rates for nitroxides has led to
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new uses of these probes for biological problems.6,7 However,
wider use has been hindered by the lack of understanding of
the relaxation mechanisms leading to the electron and nuclear
spin-lattice relaxation rates of nitroxides. Our earlier work on
isotropically moving spin labels3,4 provided a largely satisfactory
explanation of the effect of isotropic motion on the spin-lattice
relaxation rate. The present paper is an extension of that work
to anisotropic motion.

Spin-labeled fatty acid/membrane systems, typified by the
SASL probes, have been a test bed for interpreting the effect
of anisotropic motion on EPR spectra. Historically, SASLs were
used to test the accuracy of CW simulation of anisotropic
motion.8 In HYSCRF, the membranes used were multilamellar
dispersions of lipids (liposomes) containing 0.5 or 1 mol % of
spin labels. The liposomes of DMPC (dimyristoylphosphati-
dylcholine) contained 5-, 12-, and 16-doxylstearic acid spin
labels (5-, 12-, and 16-SASL). Their pSR spectra were acquired
at 27 and 37°C with the membranes in the fluidLR phase.9

There has been an immense amount of EPR work on the
anisotropic motion of spin labels in membranes from the 1970s
on.8,10-15 Virtually all of this investigation has been done with
continuous-wave EPR (CWEPR) at X-band EPR frequencies
(9.5 GHz). An important model for the motion of spin labels in
membranes is the SRLS (slowly relaxing local structure) model
of Freed an co-workers, wherein the nitroxide spin probe moves
in a restricted local environment, which itself is reorienting on
a longer time scale.16,17Fast motion arises from internal or local
probe dynamics, whereas the slower motion describes the global
tumbling of the macromolecule. Refinements of this model
include the case when the global tumbling is the rigid limit,
the microscopic-order macroscopic-disorder (MOMD) model.
Another case is the fast internal motion (FIM) model, wherein
the internal motion is so rapid that it leads to partial averaging
of the magnetic tensors. Recently, a combined 250 and 9 GHz
ESR study was performed on membrane vesicles composed of
pure lipid (DPPC) and DPPC/cholesterol in a 1:1 molar ratio
using the end-chain-labeled lipid, 16-PC.18,19 Simultaneous
fitting of both low and high-frequency CW EPR spectra was
required to remove ambiguities among all of the various
dynamic, ordering, and geometric factors that characterize the
complex dynamics in these lipid systems. This multi-frequency
study thus permitted the separation of both internal and global
lipid motion.

There have been a number of attempts to compare the motion
of lipids measured by NMR with those studied by CW EPR.20,21

NMR measurements are made on deuterium-labeled lipids. The
NMR spectra in the study of Kothe and co-workers were
simulated using a line-shape model that incorporated chain-
rotational isomerism as well as restricted anisotropic motion of
the lipid molecules as a whole.20 The simulation was valid in
all of the motional regimes of conventional CW EPR spectros-
copy as well. The simulation parameters yielded a consistent
description for the chain order and dynamics for all of the label
positions. The correlation times and order parameters for the
overall motion were the same at all of the positions down the
chain. These measures of overall reorientation had very similar
values when determined by CW EPR and NMR. Such work
gives confidence that a uniform motional model could be
devised to cover a wide frequency range of motion.

The simulation of CW line shapes uses only those terms of
the Hamiltonian (called the secular and pseudosecular terms)
that are stationary at the microwave frequency, that is, in the
rotating frame.22a The secular and pseudosecular terms do not
contribute to the spin-lattice relaxation of the electron.

Therefore, an explanation of spin-lattice relaxation requires
other terms from a more complete Hamiltonian (the nonsecular
terms). At the present time, only the Redfield theory is able to
use the nonsecular terms to compute spin-lattice relaxation
rates. The CW simulation techniques, which have been suc-
cessful for anisotropic motion, are complementary to the work
described herein but do not provide a methodology for spin-
lattice rate calculations.

This paper shows that the microwave-frequency dependence
of experimental spin-lattice relaxation rates measured by time-
domain techniques is explained by a set of well-defined
mechanisms with a very simple dynamics process using the
Redfield relaxation theory. Future work will include additional
mechanisms and more sophisticated dynamics processes. How-
ever, because no theory has been demonstrated that is capable
of describing the magnitude and the frequency dependence of
the spin-lattice relaxation rates, it is our goal to keep the
Hamiltonians and the dynamics as simple as possible but still
explain the general features of the relaxation rates. This work
should provide a basis for a detailed quantitative explanation
of the electron spin-lattice relaxation rates (or times) in any
nitroxide spin-label system because the pertinent mechanisms
have been isolated. The assumption of anisotropic rigid-body
dynamics simplifies the relation between the model of spin-
label dynamics and the spin-lattice relaxation rate. The
relaxation rates given here may be extended by using correlation
functions that are obtained from more sophisticated models or
even the “model free” approaches.23,24

II. Theory

The Redfield theory of spin relaxation begins with a perturba-
tion Hamiltonian,H′, that consists of the spin operators and a
fluctuating lattice contribution, usually in a form that is bilinear
in spin and lattice variables. The relaxation rates are then
computed from this Hamiltonian using the following ap-
proximate relation:4,22a,25

The perturbation Hamiltonian,H′, enters eq 1 in a rotating frame
that is generated by the stationary Hamiltonian:H′x(τ) )
e-iHoτH′e+iHoτ. The stationary Hamiltonian isHo ) ωeSz + ωnIz

+ ajIzSz. Srepresents the Cartesian components of electron spin,
andI denotes the spin of the nitrogen nucleus. The bar over the
two Hamiltonians represents averaging of the lattice operators
over a stochastic process that ensures that the spin variables
evolve toward thermal equilibrium.Oz ∝ Sz is the operator
associated with the electron spin-lattice relaxation and satisfies
the requirement that tr{Oz

†Oz} ) 1. BecauseOz is also
Hermitian, or self-adjoint, only real-valued relaxation rates are
computed.26 A Redfield relaxation rate expression more general
than eq 1 will have other operators, containing nuclear operators
as well, in place of one of theOz operators. This definition of
R1e, given by eq 1, neglects electron-nuclear cross relaxation
rates (i.e., the Overhauser effect) and also neglects the cross
coupling of the END and CSA mechanisms because only the
Oz operator is accounted for. A more complete description of
R1e, published elsewhere, showed that these cross relaxation
contributions are very small corrections in the motional range
of the experiments considered here.4 A unique feature of eq 1
is that there is no dependence on the nuclear manifold, that is,
the spin-lattice relaxation rate, unlike the spin-spin relaxation
rate, is independent of the nuclear manifold quantum number.
The reason for this has been developed in detail elsewhere.3,4

R1e ) ∫τ)0

∞
tr{[Oz, H′x(0)][H′x(τ), Oz

†]} dτ (1)
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The Hamiltonian,H′, in eq 1 is the sum of the Hamiltonians
for each of the four mechanisms introduced in section I. The
rates associated with each of the four mechanisms considered,
at the level of approximation embodied in eq 1, add indepen-
dently.

We now develop the equations for the rates due to each of the
individual mechanisms.

END Mechanism. The END Hamiltonian isHEND ) S‚(A
- aj)‚I. A is the tensor coupling electron and nuclear spins. The
isotropic part has been removed because it will not lead to a
lattice correlation function. The secular termajSzIz is contained
in Ho. The A tensor and spin operators are defined with respect
to the laboratory frame. It is convenient to write the spin
operators in terms of spherical tensor operators. The transforma-
tion, U, converts the Cartesian spin variables labeledx, y, and
z to their spherical counterparts labeled-1, 0, and 1. The tensor
A is also rotated to the principal axis system (PAS) in which A
is diagonal. A is denoted byA in the diagonal frame. The
rotation of A from the laboratory frame to the principal axis
system is written in terms of the rotation matrix,R(Ω), and is
parametrized by the Euler angles,Ω.

where

D1(Ω) is the rank 1 Wigner rotational matrix (WRM). The
Clebsh-Gordan series reduces the product of two WRM elements
to a sum over single WRM elements of higher rank and is used
to simplify theΩ dependence ofHEND.27 Theτ dependence of
HEND

x (τ) can be evaluated explicitly ifSandI are both spin1/2
variables4 to give

whereRp are elements of the vector

andDp,q
2 (Ω) are the matrix elements of the second-rank WRM

(5 by 5 matrices).
For spin-1 nuclei, the time-dependent terms ofHEND

x (τ) that
containaj are more complicated. However, for the electron spin-
lattice relaxation rate, the time dependence arising from either
aj or ωn is negligible. The oscillating terms containingaj andωn

are slowly changing on the time-scale of the terms containing
ωe becauseωe is a much higher frequency than eitheraj or ωn

and can therefore be ignored when computing the electron spin-
lattice relaxation rates. For example, the lowest microwave
frequency,ωe/2π, that is considered here is 2.53 GHz, and the
14N ωn/2π is 0.3 MHz. The value ofaj for 5-SASL is 43 MHz.
(See Table 2.)

The components ofHEND
x (τ) are grouped together so that the

relaxation rate is written in terms of matrix and vector
multiplication. Defining the elements of the spin operators as

wherem ) q - n, HEND
x (τ) can be written as

Substituting eq 3 into eq 1

The lattice equilibrium process, represented by the bar in the
integrand of eq 4, is assumed to be anisotropic Brownian
dynamics. The correlation functions ofD2(Ω) matrix elements
are evaluated most easily in the PAS of the anisotropic diffusion
tensor, which may differ by a fixed rotation from the PAS of
A. D2(Ω) is decomposed into two rotations: a rotation from
the laboratory frame to the PAS of the diffusion tensor,D2-
(Ω′), followed by a rotation from the PAS of the diffusion tensor
to the PAS of A,D2(ΩD - A). In terms of WRMs

Equation 4 becomes

where

The trace over the spin variables in eq 5 is evaluated from the
commutation and trace properties of the spin operators that make
up the individual elements ofVq. BecauseOz represents a spin
1/2 observable

where 1I is the unit operator in the space of the nuclear spin.

TABLE 1: Spin -Lattice Relaxation Rates Predicted from
the Equation of Owenus et al.5 for Methyl Diffusion and that
of Robinson et al.3 for Spin Diffusion

frequency (GHz) 2.54 3.45 9.2 18.5 34.6
R1e

GSD- A (Mrad/s) 0.22 0.19 0.088 0.045 0.024
R 1e

GSD- B (Mrad/s) 0.20 0.18 0.13 0.098 0.078

R1e ) R1e
END + R1e

CSA + R1e
SR + R1e

GSD

HEND ) S†‚U†UR(Ω)† U†U(A - aj) U†UR(Ω)U†U‚I )

S†‚D1(Ω)†{U(A - aj)U†} D1(Ω)‚I

D1(Ω) ) UR(Ω)U† S ) U‚S I ) U‚I

andU ) 1

x2(1 -i 0
0 0 x2
-1 -i 0

) (2)

HEND
x (τ) ) ∑

m,n)-1

1

(-1)q SnIm(1 1 2
m n -q)e-i(nωe+mωn)τ

cos(nτ(aj/2)) cos(mτ(aj/2)) ∑
p)-2

2

RpDp,q
2 (Ω(τ))

Rb† ) (R2 R1 R0 R-1 R-2) ) x5(a- 0x2
3
(a+ -azz) 0 a-)

a( )
ayy ( axx

2

Vq(τ) ) ∑
n)-1

1

(- 1)q SnIm(1 1 2
m n -q)e-inωeτ

HEND
x (τ) ) Rb†‚D2(Ω(τ))‚VB(τ) (3)

R1e
END ) ∫τ)0

∞
tr{[Oz,VB

†(0)]‚D2†(Ω(0))‚RbRb†‚D2(Ω(τ))‚

[VB(τ), Oz
†]} dτ (4)

D2(Ω) ) D2(ΩD - A)‚D2(Ω′)

R1e
END ) ∑

p,q,p′,q′
Wp′,p ∫τ)0

∞

tr{[Oz, Vq′
† (0)][Vq(τ), Oz

†]}‚D2*
p′,q′(Ω′) D2

p,q(Ω′(τ)) dτ (5)

W ) D2†(ΩD - A)‚(RbRb†)‚D2(ΩD - A)

Oz )
x2

x2I + 1
‚Sz‚1I

tr{[Oz,, Sn
† Im

† ][Sn′Im′, Oz
†]} ) δn,n′δm,m′‚n

2 I(I + 1)
3
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Therefore

where

The rotational correlation functions

in eq 5 remain to be evaluated. In the most general treatment
of rotational Brownian motion, the angular momentum and Euler
angles of the rigid body are coupled. The correlation functions
have the general form28

Using eqs 6 and 7, eq 5 becomes

where

The coefficients,Cm,n, which come from the trace over the
matrix representations to the spin operators, only allown )
(1 values and ensure that the spectral density functions are
always evaluated atωe.

The general spectral density functions,Jp,p′, have been treated
in the literature.28,29 Considerable simplification occurs when
inertial effects are neglected, leaving only Brownian motion of
the Euler angles. The dynamics of rigid-body anisotropic motion
require two rates at a minimum, a parallel and a perpendicular
diffusion coefficient,d| andd⊥. The diffusion tensor in the PAS
has the form

The dynamics described byd| andd⊥ is the Brownian motion
of a spherical top, for which the correlation functions are30

where the inverses of the individual correlation times are

The spectral densities for eq 10 are

so that eq 8 gives

Equation 12 is the final form of the END spin-lattice relaxation
rate used in section III.

The rate (eq 12) depends on the rotation matrix,D2(ΩD - A),
which connects the PAS of the diffusion and hyperfine tensors,
throughWp,p coefficient. The angular dependence of eq 12 can
be written directly in terms ofR(ΩD - A) by first writing Wp,p

) tr{W‚Λp}, whereΛp is thepth projection matrix.Λp can be
expressed in terms of thej ) 2 representation of the angular
moment operator,Jz, as31

The components of angular moment transform under rotation
as a vector27

The rotation matrix elements depend on two angles. There is a
major, azimuthal tilt angle that specifies the relative angle of
the Z components. The minor tilt angle specifies theX-Y
direction of the tilt. If only a single tilt angle is considered in
the direction of theY axis then

The explicit form of the spin-lattice relaxation rate is

where

and

tr{[Oz,, Vq′
† (0)][Vq(τ), Oz

†]} ) δq,q′ ∑
n+m)q

Cm,ne
-inωeτ (6)

Cm,n ) n2 I(I + 1)
3 (1 1 2

m n -(m + n) )2

D2*
p′,q′(Ω′) D2

p,q(Ω′(τ))

Dp′,q′
2 *(Ω(τ)) Dp,q

2 (Ω(0)) ) δq,q′‚Gp,p′(τ) (7)

R1e
END ) ∑

p,p′,n,m

Wp,p′‚Cm,n‚Jp,p′(nωe) )

I(I + 1)

3
∑
p,p′

Wp,p′{1

5
+

1

10
+

1

30}(Jp,p′(ωe) + Jp,p′(-ωe)) )

2

9
I(I + 1)∑

p,p′
Wp,p′‚R(Jp,p′(ωe)) (8)

Jp,p′(nωe) ) ∫τ)0

∞
Gp,p′(τ)e-inωeτ dτ

D ) (dxx 0 0
0 dyy 0
0 0 dzz

)) (d⊥ 0 0
0 d⊥ 0
0 0 d|

)) 1
6(τ⊥

-1 0 0

0 τ⊥
-1 0

0 0 τ|
-1) (9)

Dp′,q′
2 *(Ω′(τ)) Dp,q

2 (Ω′(0)) ) 1
5
δp,p′δq,q′e

-τ(6d⊥+p2(d|-d⊥)) )

1
5
δp,p′δq,q′e

-(τ/ςp) (10)

1
ςp

) 6d⊥ + p2(d| - d⊥)

R(Jp,p′(nωe)) ) δp,p′
1
5

ςp

1 + (nωeςp)
2

(11)

R1e
END )

2

45
I(I + 1)∑

p

Wp,p

ςp

1 + (ωeςp)
2

(12)

Λp ) ∏
m*p

Jz - m1

p - m

tr{W‚Λp} ) tr{RbRb†‚D2(ΩD - A)‚Λp‚D
2†(ΩD - A)}

D2(ΩD - A)‚Jz‚D
2†(ΩD - A) ) R3,1(ΩD - A)‚Jx +

R3,2(ΩD - A)‚Jy + R3,3(ΩD - A)‚Jz

R3,1 ) 0, R3,2(ΩD - A) ) sin(θ) R3,3(ΩD - A) ) cos(θ).

R1e
END )

2

9
I(I + 1)∑

p

cp

ςp

1 + (ωeςp)
2

(13)

c(2 ) 1
16

(ayy - 2axx + azz+ (ayy - azz)cos(2θ))2

c(1 ) 1
4
(ayy - azz)

2 sin2(2θ) (14)

c0 ) 1
24

(ayy - 2axx + azz- 3(ayy - azz) cos(2θ))2

∑
p

cp ) {(axx - aj)2 + (ayy - aj)2 + (azz- aj)2}
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The isotropic case can be recovered from eqs 12 and 13 by
settingςp ) τc and gives the standard result:3,22a

The maximum value of eq 15 as a function of correlation time
occurs whenωeτc equals 1. At X band, for example, the
maximum isotropic rate is 0.6 Mrad/s, using the known values
of A for 5-SASL. (see Table 2).

The END mechanism applies not only to intramolecular
electron-nitrogen dipolar interaction but also applies to electron-
proton dipolar interactions within a nitroxide.

Chemical Shift Anisotropy Mechanism.The CSA Hamil-
tonian is HCSA ) âeH‚(G - gj)‚S. G is the tensor coupling
electron spin to the applied field and contains the spin-orbital
contribution to the Hamiltonian.H is the external field, andâe

is the electronic Bohr magneton. We assume the field (H) is
along the externalẑ axis and has a magnitude that matches the
Larmor frequency of the electron so thatâeH ) ωe/gj‚ẑ. The
CSA spin-lattice relaxation rate is treated in analogy to the
END mechanism, with G replacing A.G represents G in its

The vectorRb is replaced by

The CSA Hamiltonian in the rotating frame is

As in the END treatment, the rotationD2(Ω(τ)) is decomposed
into a rotation from the laboratory frame to the PAS of the
diffusion tensor, followed by a fixed rotation from the diffusion
tensor to the PAS of the G tensor.D2(Ω) ) D2(ΩD - G)‚D2(Ω′)

Equation 16 is substituted into eq 1 to give

where

In the case of Brownian anisotropic motion with no inertial
effects, the spectral density functions are given by eqs 10

and 11, so the CSA relaxation rate is

The rate (eq 18) can be rewritten in complete analogy to eq 13
with a dependence on a single tilt angle between the diffusion
tensor and the G tensor.

The isotropic case of eq 18 is recovered by settingςp ) τc

and gives the standard result22a

The maximium value of eq 19 as a function of correlation time,
at a fixed spectrometer frequency, occurs whenωeτc equals 1.
At X band, for example, the maximum isotropic rate is 0.03
Mrad/s, using the known values of G for 5-SASL (see Table
2). For a fixed correlation time,τc, the maximum rate, as a
function of the spectrometer frequency, occurs when the
spectrometer frequency goes to infinity and is

Therefore, at large spectrometer frequency the CSA is limited
by the dynamics and at this point becomes competitive with
(but not as large as) the SR mechanism, which is developed
next. The CSA can never become a dominant mechanism in
the large spectrometer frequency regime.

Spin-Rotation Mechanism.There has been limited discus-
sion in the EPR literature on the application of anisotropic
motion to the spin-rotation mechanism.28,32,33We briefly outline
the application of anisotropic motion with spin rotation.

The spin-rotation Hamiltonian isHSR ) - S‚(G - gfree)‚ω,
whereω is the angular velocity of the nitroxide in the laboratory
frame andgfree is the g value of the free electron. Both the
angular velocity and the angular coordinates are stochastically
modulated as a result of Brownian motion. The proper reference
frame, in which to express the angular velocity correlation
functions, is the PAS of the inertial tensor, which we assume is
coincident with the diffusion tensor.28 R(Ω′) is the rotation from
the laboratory frame to the PAS of the diffusion tensor.ωI will
denote the angular velocity in the PAS of the inertial/diffusion
tensor, so thatωI ) R(Ω′)‚ω. As above, G in its PAS is denoted
by G. R(ΩD - G) is the fixed rotation from the PAS of the
diffusion tensor to the PAS of G.

Transforming into a spherical basis with eq 2 gives

where

TABLE 2.

tensors (PAS) XX YY ZZ

A (in Gauss) 6.3 5.9 32.0
G 2.0090 2.0060 2.0020
I (in amu- Å2) 1000 1000 1000

R1e
CSA )

1

25
∑

p

Wp,p
CSA

ςp

1 + (ωeςp)
2

(18)

R1e
CSA ) 1

5
ωe{(gxx - gj

gj )2

+ (gyy - gj
gj )2

+

(gzz- gj
gj )2}( ωeτc

1 + (ωeτc)
2) (19)

R1e
CSA - MAX )

1

5τc
∑
i)1

3 (gii - gj

gj )2

.

HSR ) -S‚R-1(Ω′)‚R-1(ΩD - G)‚(G - gfree)‚R(ΩD - G)‚

R(Ω′)‚ω ) -S‚R-1(Ω′)‚R-1(ΩD - G)‚(G - gfree)‚
R(ΩD - G)‚ωI

HSR ) -S†‚D1†(Ω′)‚g‚ωI ) -ωI
†‚g†‚D1(Ω′)‚S (20)

g ) U‚R-1(ΩD - G)‚(G - gfree)‚R(ΩD - G)

R1e
END ) 2

9
I(I + 1){(axx - aj)2 + (ayy - aj)2 +

(azz- aj)2}
τc

1 + (ωeτc)
2

(15)

PAS whereG ) (gxx 0 0
0 gyy 0
0 0 gzz

)
γb† )

ωex5

gj (g- 0x2
3
(g+ - gzz) 0 g-) whereg( )

gyy ( gxx

2

HCSA
x (τ) ) γb†‚D2(Ω(τ))‚VBCSA(τ) (16)

Vq
CSA ) (-1)qSq‚1I(1 1 2

0 q -q)e-i(qωe)τ

R1e
CSA )

1

5
∑
p,p′

Wp,p′
CSAR(Jp,p′(ωe)) (17)

WCSA ) D2†(ΩD - G)‚(γbγb†)‚D2(ΩD - G)
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The angular velocity is left in its Cartesian coordinates to
facilitate the use of the known velocity correlation functions.
As a result, the spherical-to-Cartesian transformation matrix,
U, has been absorbed into the definition ofg, leavingg non-
Hermitian. The overall Hamiltonian is self-adjoint, however.

Inserting the spin-rotation Hamiltonian into eq 1 gives the
spin-lattice relaxation rate due to the spin-rotation mechanism

The effects of Brownian dynamics are contained in the
combined rotation and angular velocity correlation functions.
The elements of theg tensor are time-independent. It is
necessary to write the matrices out as individual elements to
obtain the correlation functions explicitly.

where

The commutation properties of the individual spin operators
give

The correlation functions for the most general case of
anisotropic rigid-body motion were given by Hubbard and are
of the form32,34

Using eqs 23 and 24, eq 22 becomes

Where

Because we ignore inertial effects in our treatment of
Brownian motion, Gp,p′

m,m′(τ) simplifies and is described by
separate correlation functions for the angular coordinates and
velocity.

The separate angle and velocity correlation functions were given
by Hubbard under this approximation.32 In the case of a spherical
top where the transverse elements of the diffusion tensor are
equal

This is the first-rank analogue of the correlation functions in
eq 10.

The velocity correlation functions can be written as a diagonal
3 by 3 matrix for the case of a spherical top, where the transverse
inertial components are equal,Ixx ) Iyy * Izz. The diffusion and
inertial tensors are considered to be codiagonal.

where

In the case of isotropic motion, the factorsfk are all equal to
unity.

The angular velocity drag terms,Bm, are connected to the
orientation diffusion coefficients through the friction tensor. The
general relations using the friction tensor,F, areD ) kBTF-1

andB ) F‚I-1. The combined identity (the Hubbard relation)
is

wherem ) {x, y, z}.30 It is convenient to define the correlation
times associated with the diffusion coefficients as

Using eqs 26 and 27, eq 24 becomes

Gp,p′
m,m′(τ) in eq 28 is diagonal in both the upper and lower

indices, allowing for further simplification of eq 25.

The combined spectral density functions in expanded form are

R1e
SR ) ∫τ)0

∞
tr{[Oz, S†]D1†(Ω′)‚g‚(ωIωI

†(τ))‚g†‚D1(Ω′(τ))

[S(τ), Oz
†]} dτ (21)

R1e
SR ) ∫τ)0

∞
tr{C†D1†(Ω′(0))g‚(ωIωI

†(τ))‚g†D1(Ω′(τ))

C(τ)} dτ ) ∑
n,n′,p,p′,m,m′

∫τ)0

∞
tr{Cn

†Cn′(τ)}

D1†(Ω′(0))n,pgp,m(ωIωI
†(τ))m,m′g

†
m′,p′D

1(Ω′(τ))p′,n′ dτ )

∑
n,n′,p,p′,m,m′

(gp′,m′
* gp,m) ∫τ)0

∞
tr{Cn

†Cn′(τ)}‚

D1*(Ω′(0))p,nD
1(Ω′(τ))p′,n′(ωIωI

†(τ))m,m′ dτ (22)

C(τ) ) [O+eiωeτ

0
O-e-iωeτ ]) [S(τ), Oz

†]

tr{Cn
†Cn′(τ)} ) einωeτδn,n′(1 - δn,0) (23)

D1*(Ω′(0))p,n D1(Ω′(τ))p′,n′(ωIωI
†(τ))m,m′ ) δn,n′Gp,p′

m,m′(τ) (24)

R1e
SR ) ∑

p,p′,m,m′
(gp′,m′

* gp,m){Jp,p′
m,m′(ωe) + Jp,p′

m,m′(-ωe)} (25)

Jp,p′
m,m′(ωe) ) ∫0

∞
Gp,p′

m,m′(τ)e-iωeτ dτ

D1*(Ω′(0))p,n D1(Ω′(τ))p′,n′ (ωIωI
†(τ))m,m′ )

D1*(Ω′(0))p,n D1(Ω′(τ))p′,n (ωIωI
†(τ))m,m′

Dp,n
1* (Ω′(τ)) Dp′,n′

1 (Ω′(0)) ) 1
3

δp,p′δn,n′e
-τ(2d⊥+p2(d|-d⊥)) (26)

ωIωI
†(τ) ) (kBT

Ixx
e-Bxτfx(τ) 0 0

0
kBT

Iyy
e-Byτfy(τ) 0

0 0
kBT

Izz
e-Bzτfz(τ)

) (27)

fm)x,y ) eCe-C(Bzτ+e-Bzτ), fm)z ) 1, andC )
kBT

IzzBz
2(Ixx - Izz

Ixx
)2

dmBm )
kBT

Imm

τm ) 1
6dm

Gp,p′
m,m′(τ) ) 1

3
δm,m′δp,p′e

-τ(2d⊥+p2(d|-d⊥))
kBT

Imm
e-Bmτfm(τ) (28)

R1e
SR ) ∑

p,m

1

9τm

|gp,m|2 Jp
m(ωe) whereJp

m(ωeτ) )
3

dm

R(Jp,p
m,m(ωe))

(29)
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The spectral density,Jp
z, is a standard Lorentzian.Jp

x andJp
y

are both composed of sums of Lorentzians with increasing
widths. In the motional regime whereBk . ωe andBk . d⊥,
d|, the spectral density functions are unity and

The sum overp can be simplified to bring eq 30 into a form
that is similar to eqs 13 and 14 for the END relaxation rate.

Equation 30 becomes

If a single tilt angle between the PAS of the diffusion tensor
and G tensor is assumed, as in the development of the END
and CSA mechanisms

where

The spin-rotation relaxation rate reduces to the well-known
isotropic values whenτm equalsτc andBm equalsBh. For isotropic
motion, eq 29 simplifies to

Whenωeτc equals 1 andτcBh . 1, the spin-rotation rate can be
compared to the END and CSA. At X band, for example, the
isotropic rate is 0.37 Mrad/s using the known values of G for
5-SASL (see Table 2).

General Spin-Diffusion Mechanism.General spin diffusion
is comprised of a set of electron-nuclear mechanisms. Spin-
diffusion mechanisms are based on through-space dipolar
interaction of the electron spin with either nitroxide or solvent
protons or deuterons. This mechanism is distinguished from the
END mechanism above by the following: (1) the way in which
the dipolar interaction is stochastically modulated and (2) the
number of participating nuclei. For example, the distance
between the nuclear and electron spin may be modulated
stochastically if the moiety containing the nuclear spin is
physically diffusing relative to the molecular frame. Rotation
of the methyl groups adjacent to the N-O bond of the nitroxide
modulates the methyl proton-electron distance. The methyl
rotation is stochastic and is an example of diffusion. Unlike
the END mechanism above, the distance between the electron
and the nucleus is modulated, as opposed to the relative angle
between the dipoles in END relaxation. The relaxation rate due
to methyl rotation that has been suggested is5

where

The effective diffusion time,τtherm, is taken to be the thermally
induced rotational reorientation time for the methyl groups,
which is given by an approximate Arrhenius dependence

Therefore,τtherm(20 °C) ) 1.06× 10-10 s. If we compareτtherm

with the temperature dependence of the viscosity of water
(modeled as an activated process with an activation energy of
2200 K‚R)35 and consider viscosity changes to be due to the
effect of temperature on the solvent (water), we find that the
effective diffusion time,τtherm, will scale nearly as the rotational
correlation time of the solvent to the-1/2 power. As a result,
in the slow motion limit,ωeτtherm . 1, R1e

GSD- A will depend on
the rotational correlation time to the-1/2 power and will depend
on the spectrometer frequency,ωe, to the-1 power.

A more general spin-diffusion process involves the transla-
tional diffusion of proton-containing solvent molecules and has
been treated by Torrey and others.36,37The translational diffusion
of solvent in the vicinity of the nitroxide modulates the
electron-solvent proton distance. The translational diffusion
interaction scales with the inverse square root power of the
translational correlation time, for Gaussian random flights.
Simultaneously with this physical diffusion, however, there is
diffusion of the solvent nuclear polarization in the network of
the surrounding solvent protons by nuclear dipole-dipole “flip-
flops”. The proton-proton spin flip-flop transition rate occurs
on a 10-ps time scale for water at room temperature.22b The
nuclear polarization of the solvent protons can diffuse in and
out of the vicinity of the electron spin by proton-proton
interactions so that the solvent acts a bath of nuclear-spin
polarization. The diffusion of nuclear polarization in the nuclear-
spin system can modify the expression for relaxation by physical
translational diffusion so that the resulting power-law depen-
dence on correlation time of the total rate is not the inverse

Jp
m)x,y ) Bxe

C∑
n)0

∞

(-C)n

n!

((2d⊥ + p2(d| - d⊥ )) + Bx + (C + n)Bz)

(ωe)
2 + ((2d⊥ + p2(d| - d⊥ )) + Bx + (C + n)Bz)

2

Jp
z ) Bz

((2d⊥ + p2(d| - d⊥ )) + Bz)

(ωe)
2 + ((2d⊥ + p2(d| - d⊥ )) + Bz)

2

R1e
SR ) ∑

p,m

1

9τm

|gp,m|2 (30)

∑
p

|gp,m|2 ) ∑
p,q,q′

(R-1(ΩD - G)‚(G - gfree)‚

R(ΩD - G))q,m(R-1(ΩD - G)‚(G - gfree)‚R(ΩD - G))q′,mUp,q
* Up,q′ )

(R-1(ΩD - G)‚(G - gfree)
2‚R(ΩD - G))m,m

R1e
SR ) ∑

p,m

1

9τm

|gp,m|2 ) ∑
m

1

9τm

(R-1(ΩD - G)‚(G - gfree)
2‚

R(ΩD - G))m,m

R1e
SR ) ∑

m

cm

9τm

cx ) (gxx - gfree)
2

cy ) (gyy - gfree)
2 cos2(θ) + (gzz- gfree)

2 sin 2(θ) (31)

cz ) (gzz- gfree)
2 cos2(θ) + (gyy - gfree)

2 sin 2(θ)

R1e
SR ) 1

9τc
{(gxx - gfree)

2 + (gyy - gfree)
2 +

(gzz- gfree)
2}

τcBh(1/3 + τcBh)

(ωeτc)
2 + (1/3 + τcBh)2

(32)

R1e
GSD- A ) A( ωeτtherm

1 + (ωeτtherm)2) (33)

A ) 2.8× 1016

2π(9.2× 109)
) 0.484 Mrad/s

τtherm) τc
oe(Ea/RT) andEa ) 9kJ/mol≡ or

Ea

R
) 1100 K

τc
o ) 2.5× 10-12s
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square root dependence but is weaker. The form of the relaxation
rate for this spin-diffusion mechanism,3 which adapts deGennes
theory of spin-diffusion to the relaxation of the electron, is38

Hereτd is the relative solvent-nitroxide translational diffusion
time. The value ofR1e,max

SD ) 0.15 Mrad/s has been measured at
X band, and the reference frequency in the numerator is the
X-band frequencywx ) 2π(9.3 GHz).3 At X band and when
ωeτd equals 1, the spin diffusion rate is 0.15 Mrad/s. The
expression (eq 34) suggests that in the slow motion limit,ωeτd

. 1, the relaxation rate should be proportional to the spec-
trometer frequency to the-3/8 power. Table 1 compares the
GSD rates given by eqs 33 and 34 at the five frequencies of
interest for 27°C andτd ) 2.5 × 10-10 s. Table 1 shows that
eqs 33 and 34 are quite similar at lower frequencies, but differ
by a factor of 3 at the highest frequency.

Summary of Theory. The END and CSA mechanisms have
the strongest dependence on the spectrometer frequency of the
four mechanisms. The END relaxation rate is comprised of
spectral densities of the formτ/(1 + ωe

2τ2), whereas CSA is
proportional to terms with the formωe

2τ/(1 + ωe
2τ2). In the fast

motion limit, ωeτ , 1, the END mechanism is independent of
ωe, whereas CSA scales asωe

2τ. In the slow motion limit,ωeτ
. 1, the END mechanism scales as 1/ωe

2τ, whereas the CSA
mechanism is independent ofωe. The frequency dependence
of the END and CSA relaxation rates are therefore reciprocal.
The spin-rotation relaxation rate (eq 31) is independent of the
spectrometer frequency, whereas the spin diffusion mechanism
possesses a weak-3/8-power-law dependence onωe. The
examples of isotropic relaxation rates withωeτc ) 1, provided
above, illustrate that the isotropic END relaxation rate is the
dominant mechanism at X band. It is therefore expected that
the END mechanism will account for the majority of the spin-
lattice relaxation-rate dependence on spectrometer frequency in
the more complicated anisotropic case at X band and lower
frequencies.

III. Results

The spin-lattice relaxation data from HYSCRF is fit with
the four relaxation mechanisms given in section II using global
analysis. The magnetic tensors for the doxyl spin probe are given
in appendix IV of ref 10 and are shown in Table 2. The same
magnetic tensors were used for each SASL position. The order
of magnitude of the inertial tensor elements are estimated from
the geometry of SASL and are given in Table 2. The spin-
rotation rate (eq 29) reduces to eq 30 over the range of physically
reasonable values for the inertial tensors so that the fitting
function is insensitive to the inertial tensors. The inertial tensor
elements were therefore fixed for the fitting.

Least-squares fitting is performed using a global analysis
method to minimize the variance of the experimental data with
the model

We assume that the weights arewi ∝ 1/(R1e-exptl
i ) and the

weights are properly normalized,∑wi
2 equals 1. By weighting

the data in this way, we minimized the relative errors. The
weighted criterion is optimal when data spans a large range.
When the theory is plotted on a logarithmic scale, the theory

points appear as uniformly fitting the data. This follows because
the difference of the logs of the experimental and theoretical
rates, when the deviation is small, is close to the weighted rates

The application of weighted global analysis techniques enabled
us to impose constraints among the parameters common to
different data sets.

The data are first fit to an isotropic model of motion to
illustrate the inadequacy of the isotropic expressions to account
for the microwave-frequency dependence of the experimental
relaxation rates. Figure 1, left, shows the14N SASL data and
isotropic fits. The spin-lattice relaxation rate is plotted against
the isotropic correlation time,τc (see eqs 15, 19, and 32 above).
The error bars are the 6% error on the experimental relaxation
rates (see ref 39, for example). The isotropic correlation time
is the only adjustable parameter in the fit and is floated
independently for each SASL label position. Circles are 27°C
data and squares are 37°C data. The theory lines are labeled
Q, K, X, S, and L from bottom to top according to spectrometer
frequency. The15N data is shown in Figure 1, right, and was
fit simultaneously with the14N data. The values ofτc for 15N
were constrained to be the same as the14N data at each label
position and temperature. Table 3, first column, shows the best-
fit correlation times. To show the consistency of14N and 15N
data sets, we also fit the two data sets independently of each
other. The results for the independent fits are reported in the
3rd and 4th columns of Table 3, and show a relative deviation
of 5%. In all cases, the correlation times found for the 37°C
data were smaller than those for the 27°C for the same label
position, and the correlation times were smaller for the spin
label further down the n-SASL chain.

The anisotropic model has three adjustable parameters: the
mean correlation time

the magnetic tensor-diffusion tensor tilt angle,θ, and the
anisotropy,R ) τ⊥/τ| (see eqs 9, 14, and 31). Minor tilt angles
of 0 and 90° were tried, and the results were so similar that no
effort to optimize this parameter was attempted. The minor tilt
angle was fixed at 0°. Figure 2, left and right, shows the best-
fit of the 14N and 15N data to the anisotropic model, where a
single tilt angle and anisotropy are used for both sets of data at
all label positions. Circles are 27°C data, and squares are 37
°C data. The spin-lattice relaxation rates are plotted against
the correlation time,τ⊥, which is related toτj by

The error bars are the 6% relative errors reported from the
experiments. The mean correlation time,τj, is constrained to be
the same for the14N and 15N data at each labeling position.
The best-fit mean correlation times are given in the 2nd column
of Table 3. The optimum value of the tilt angle isθ )13.0(
0.6°, and the optimal anisotropy isR ) 68 ( 6.

The correlation times,τc, for the isotropic model are about 2
to 3 times larger than theτj values of the anisotropic model,
and theτ⊥ values of the anisotropic model are 4 times larger
than theτj values of the anisotropic model. Therefore, the
isotropic model is optimized by the values of the correlation

R1e
SD - B ) R1e,max

SD ( 2wxτd

1 + (ωeτd)
3/2)1/4

(34)

σ2 ) ∑
i

wi
2(R1e-exptl

i - R̂1e
i)2

ln(R1e-exptl
i ) - ln(R̂1e

i ) ≈ R1e-exptl
i - R̂1e

i

R1e-exptl
i

.

τj ) x3τ|τ⊥
2

τ⊥ ) x3R τj

4056 J. Phys. Chem. A, Vol. 109, No. 18, 2005 Mailer et al.



times,τc, that are midway between theτj andτ⊥ values for the
anisotropic model.

Figure 3 is a scatter plot of all of the experimental spin-
lattice relaxation data (14N and15N) plotted against the best-fit
theory that locked the fitting parameters to be the same for14N
and15N at each label position and temperature. Figure 3, left,
is the scatter plot for the isotropic model, and Figure 3, right,
is the anisotropic model. The average relative error for the
isotropic fit is 18%. The average relative error for the anisotropic
fit is 7%. The error on the experimental data points is 6%.39

Therefore, the agreement of the anisotropic fit with the
experimental data is nearly within the experimental accuracy.
The improvement of fit to the 56 data points for the anisotropic
model is at the cost of two more parameters than the comparable
isotropic model. TheøR

2 (reduced chi square) for the isotropic
model is 9.0, as opposed to 1.4 for the anisotropic model. This
represents a 6-fold improvement inøR

2 upon going from a
model with six independent, adjustable parameters to one with
eight parameters.

The constraints linking the correlation times, tilt angle, and
anisotropy of the14N and15N data are removed to test whether
the anisotropy model can better fit the data with additional
degrees of freedom. Although separate tilt angles and anisotro-
pies are not physically expected for the two different isotopes,
the fitting illustrates whether the14N and 15N data sets are
consistent, and whether an improved fit, even if it is pathologi-
cal, can be found. The 5th and 6th columns of Table 3 display
the best-fitτj values for the14N and15N data when fit with

separate correlation times. The tilt angle and anisotropy were
identical within error to the case where a commonτj was used.
The relative deviation of the two sets ofτj values obtained from
the 14N and15N data is 4% (see the fifth and sixth columns of
Table 3), and the mean of the relative deviations is 0.15%. The
average fitting error remained at 7%. Therefore, unlocking the
correlation times for14N and 15N data does not lead to
improvement of the fit.

A further test is to allow for a different tilt angle and
anisotropy for the14N and 15N data, as well as different
correlation times. The second and third columns of Table 4
contain the results for the separate fits of14N and 15N data.
The average fitting error is 6%, which is only a minor
improvement of the average fitting error of 7% for locked data
sets. The14N and 15N data sets are optimized by different tilt
angles and anisotropies. The14N correlation times (Table 4,
second column) did not significantly change. The change in tilt
angle and anisotropy represents a tradeoff between these two
variables by decreasing the value ofθ and increasing the value
of R. The value ofθ is identical within error to the locked case.
The value ofR nearly overlaps with the value found with14N
and15N data sets locked. In contrast, the15N correlation times
increased by 0.02 ns on average. The tilt angle and anisotropy
also showed tradeoff by increasing the value ofθ and decreasing
the value ofR.

IV. Discussion

The results from section III demonstrate that an anisotropic
model of SASL dynamics is necessary for a proper description
of the microwave-frequency dependence of the spin-lattice
relaxation rates. Previous work on isotropically moving small
nitroxides has shown that the four relaxation mechanisms used
here are sufficient to predict the isotropic spin-lattice relaxation
rates quantitatively at X band.3 Figures 1 and 3, left, show that
the isotropic theory of relaxation rates does not fit the SASL
data. In contrast, the generalization of the four mechanisms to
anisotropic motion (detailed in section II) allows for a good fit
to the SASL data. The agreement with the data is achieved with
the anisotropic model by the addition of only two new adjustable

Figure 1. Isotropic simulation of multifrequency electron spin-lattice relaxation rates of n-SASL in DMPC liposomes.14N (left panel) and15N
(right panel) isotopes are acquired at 27 (squares) and 37°C (circles).1 Spectrometer frequencies are L (2.54 GHz), S (3.45 GHz), X (9.2 GHz), K
(18.5 GHz), and Q (34.6 GHz) bands. There is no data for the15N-sl at Q band (right panel). Error bars are the experimental uncertainty of 6%.
Solid lines are the sum END, CSA, SR, and GSD relaxation mechanisms, plotted as a function of isotropic rotational correlation times,τc (see
section II, text). Experimental rates are plotted with the isotropic rotational correlation time,τc, that best fits the solid lines assuming an identical
τc for 14N and15N data at equivalent temperatures and label positions (see Table 3, column 1). The A, G, and inertial tensors are given in Table 2.

TABLE 3. a

label position τc
b τjc τc 14N-sl τc 15N-sl τj 14N-sl τj 15N-sl

5-slDSL, 27°C 0.39 0.22 0.40 0.36 0.22 0.21
12-slDSL, 27°C 0.29 0.13 0.30 0.28 0.13 0.13
16-slDSL, 27°C 0.12 0.038 0.12 0.13 0.037 0.040
5-slDSL, 37°C 0.30 0.14 0.29 0.31 0.13 0.15
12-slDSL, 37°C 0.22 0.084 0.23 0.21 0.087 0.081
16-slDSL, 37°C 0.089 0.029 0.083 0.094 0.028 0.030

a All correlation times are in nanoseconds. Errors on all correlation

times do not exceed 10%.b Isotropic correlation time.c τj ) 3xτ⊥
2τ|
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parameters: the tilt angle between the magnetic and the diffusion
tensors and the anisotropy of the diffusion. The decomposi-
tion of the relaxation rate into the four mechanisms, which is

detailed in section II, using the best-fit parameters, illustrates
how the frequency dependence of the spin-lattice relaxation
rate arises.

The END relaxation mechanism is the primary mechanism
responsible for a microwave-frequency dependence of the
relaxation rates for the range of data analyzed here. Table 5A
and B show the percentage contributions of the four mechanisms
to the total relaxation rate, for the optimal tilt angle and
anisotropy (see section III Figure 2) at two different values of
τ⊥, which bracket the data. The CSA mechanism only enters in
the high-frequency regime, where it contributes 20% to the total
rate at most. At the higher spectrometer frequencies, the
frequency-insensitive SR and GSD mechanisms dominate.
Improved agreement of the anisotropic model over the isotropic
model with the experimental data is achieved because the
anisotropic expression for the END rate (eq 13) spreads the END

Figure 2. Anisotropic simulation of multifrequency electron spin-lattice relaxation rates of n-SASL in DMPC liposomes.14N (left panel) and15N
(right panel) isotopes are acquired at 27 (squares) and 37°C (circles).1 Spectrometer frequencies are L (2.54 GHz), S (3.45 GHz), X (9.2 GHz), K
(18.5 GHz), and Q (34.6 GHz) bands. There is no data for the15N-sl at Q band (right panel). Error bars are the experimental uncertainty of 6%.
Solid lines are the sum END, CSA, pSR, and GSD relaxation mechanisms plotted as a function of the transverse anisotropic rotational correlation
time, τ⊥. The anisotropy isR ) τ⊥/τ| ) 68, and the tilt angle between the magnetic and diffusion tensors isθ ) 13° (see text). Experimental rates
are plotted with theτ⊥ that best fits the solid lines assuming an identicalτ⊥ for 14N and15N data at equivalent temperatures and label positions (see
Table 3, column 2,τ⊥ ) x3 R‚τj). The A, G, and inertial tensors are given in Table 2. See Table 4 for more details of the dependence of the data
on correlation times.

Figure 3. Scatter plot of the experimental spin-lattice relaxation rates and the simulated spin-lattice relaxation rates for the isotropic model (left
panel, see Figure 1) and the anisotropic model (right panel, see Figure 2). Experimental values are plotted on the abscissa. The solid line on each
figure represents perfect correlation between the experiment and the simulation. The average relative average error for the isotropic fit is 18%. The
average relative error for the anisotropic fit is 7%.

TABLE 4. a

label losition
τj N14/15
locked

τ⊥ N14/15
locked τj 14N τj 15N

5-slDSL, 27°C 0.22 0.90 0.22 0.23
12-slDSL, 27°C 0.13 0.53 0.12 0.16
16-slDSL, 27°C 0.038 0.16 0.034 0.048
5-slDSL, 37°C 0.14 0.57 0.12 0.18
12-slDSL, 37°C 0.084 0.34 0.081 0.098
16-slDSL, 37°C 0.029 0.12 0.026 0.035
ratio 68(6) 85(9) 46(5)
tilt angle 13.0(6)° 12.3(7)° 15(1)°

a All correlation times are in nanoseconds. Errors on all correlation
times do not exceed 10%.
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amplitude over several spectral density functions, as opposed
to the single spectral density in the isotropic expression (eq 15).
The spread of spectral density functions leads to a broadening
of the domain of correlation times over which the END rate
contributes.

The small tilt angle and the range of values of the correlation
times found in this study can be compared with the findings of
Lange and co-workers, who simulated the CW EPR spectra of
labeled DMPC in oriented bilayers with a detailed model of
anisotropic motion. Their study was of a spin-labeled myristate
chain attached to the glycerol backbone of a DMPC lipid, rather
than the free stearic acid incorporated in a lipid (analyzed here),
so differences are expected. Lange and co-workers reported that
in the fluid, LR, phase of DMPC there is no net tilt of the lipid
chains.21 They also found that lipid chains rotate at an
intermediate rate about their long axis in the range of 1-6 ns,
and the reorientation of the chain axis is in the range from 13
to 60 ns. Additionally, they report a mode of motion consisting
of rapid trans-gauche isomerization (at the C-6 position),
characterized by a jump timeτJ e 0.2 ns. Because the
isomerization is a local phenomenon, motion on a similar time
scale is expected in the free stearic acid chain of SASL. Freed
and co-workers also reported correlation times that are inter-
mediate between the fastest and longest times of Lange et al.
for similar systems and attribute part of the motion to local
modes as well.18,19 The slowest correlation times found in this
study, τ⊥, are comparable to the trans-gauche isomerization
correlation times, which are 5-10 times faster than the axial
rotation times reported by Lange et al. The faster set of
correlation times,τ|, reported here, which are in the 10-11-
10-10 s range, may correspond to processes so fast that they
are not directly observable by CW EPR spectroscopy. Rapid
motion of this sort could explain why CW EPR reports no tilt
angle in the fluid,LR, phase, whereas we estimate a 13° tilt
angle. Rapid fluctuations around the lipid chain axis would
effectively generate an averaging of the tensor elements used
in the CW EPR simulations and would rotate the averaged tensor
elements to be more collinear with the lipid chain axis. This
line of reasoning becomes even more plausible when one recalls
that the trans-gauche isomerization is a jumping between two
structures that differed by a 25-30° tilt angle in the gel phase.
The jump times are bracketed by the two sets of correlation

times reported here, and may well be averaged values of these
times with dynamically averaged tilt angles and magnetic tensor
elements.

As noted above, the terms in the Hamiltonian needed to
simulate the spin-lattice relaxation rates are different from those
used to simulate the CW EPR spectra. Therefore, in systems
with a wide dynamic range of motional processes, such as lipids,
it is not surprising that the different measurements would be
sensitive to different motional processes and time scales for
those processes. The information obtained from the spin-lattice
relaxation rates must be considered to be complementary to that
acquired from the CW EPR spectra. Therefore, it is not
necessary that the motional rates seen in the two techniques be
the same.

The average error of anisotropic fit given in section III is
nearly within the experimental error of the relaxation rates.
Unlocking the correlation time, tilt angle, and anisotropy
between14N and 15N data sets does not lead to significant
improvement in the quality of the fit or significantly affect the
14N optimized fitting parameters (see Table 4 and description).
The 15N data-set parameters did tradeoff of each other when
unlocked from the14N set so that the optimized parameters were
different between the14N and15N data sets. The quality of the
final fit was not improved significantly over the locked case,
however. In summary, the14N and15N data sets give consistent
fit parameters independently.

The tilt angle and anisotropy can also be fit independently
for each labeling position, but this does not lead to significant
improvement of the fitting error (data not shown). Allowing a
second (minor) tilt angle (see eq 12) does not lead to significant
improvement of the fit either (data not shown). Therefore, further
improvement of the quality of fit must involve changing the
underlying model. We discuss several possibilities for improving
the anisotropic model to improve the fit. When a greater library
of multifrequency time-domain data becomes available, we
anticipate that more detailed models will become necessary.

One possibility for fine-tuning the anisotropic relaxation rates
is to revisit the relaxation mechanisms. A proton END mech-
anism could be potentially important for applications to general
nitroxides. The proton END expression is completely analogous
to the electron-nitrogen dipolar mechanism in section II and
has the same spectral density functions. The magnitude of the
coefficients,cp, that make up the mixture of spectral density
functions in eq 13 is the sole difference between the nitrogen
and proton END rates. The proton END contribution to the
relaxation should be dominated by the doxyl ring and methyl
protons in the case of SASL, and we estimate the contribution
of proton END to be 1 order of magnitude smaller than the
nitrogen END rate, in the present case.

Another possible contribution to the relaxation rates arises
from the cross correlation of the rates, mentioned in section II.
Cross correlation terms, developed elsewhere,4 are significant
in the fast motion limit of dynamicsωoτ , 1, wherein they
can reduce the spin-lattice relaxation rate by approximately
2-fold for isotropic motion.4 However, the correlation times and
spectrometer frequencies appropriate to the SASL data are in
the regimeωoτ J 1. Lower frequency and/or faster motion data
may necessitate the inclusion of END/CSA cross correlation
and the inclusion of other observables, which cross-relax with
the electron spin-lattice observable.

The generalized spin-diffusion relaxation rate presented in
section II differs from the END, CSA, and SR mechanisms
because the relaxation expression is not known completely from
first principles. There is no strong consensus in the literature

TABLE 5

A: τ⊥ ) 1 × 10-10 s
ν 34.6a 18.5 9.2 3.45 2.54
%R1

END 12.3b 25.7 46.6 79.0 85.3

%R1
CSA 13.2 6.0 2.1 0.4 0.2

%R1
SR 35.7 31.2 21.7 8.0 5.5

%R1
GSD 38.8 37.1 29.6 12.6 9.0

R1
total 0.26c 0.34 0.51 1.42 2.06

B: τ⊥ ) 1 × 10-9 s
ν 34.6a 18.5 9.2 3.45 2.54
%R1

END 3.9b 10.4 27.0 62.2 71.2

%R1
CSA 8.7 6.3 3.3 0.6 0.4

%R1
SR 12.3 9.6 6.4 2.5 1.7

%R1
GSD 75.1 73.7 63.3 34.7 26.7

R1
total 0.10c 0.13 0.20 0.52 0.75

a Microwave frequency in GHz.b All rates that contribute to the total

are expressed as a percent of the total; for example,%R1
END ) 100

R1
END

R1
Total

for 14N SASL at 27°C. c Total relaxation rate in Mrad/s.
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as to the exact form of this “floor” mechanism. The experimental
data of HSCRF, as well as previous work demonstrate that there
is a need for a mechanism that has a weak frequency dependence
and a weak correlation-time dependence.5,40,41For example, the
data used here show that if a model function were chosen that
had no correlation time dependence but did have a frequency
dependence, then the experimental rates would require such a
model to have a-2/3 power dependence on spectrometer
frequency. Two possible expressions were given in section II,
with different origins. Both of these empirical models ap-
proximately meet these criteria.

The first approach, based on spin-lattice relaxation measure-
ments at 9.2, 3.1, and 1.9 GHz,5 introduced a diffusion model
based on nitroxide methyl group rotation in which the rotational
correlation time (eq 33) depended only on temperature. The
second model is a generalized spin-diffusion expression that
contains a-1/8 power dependence on correlation time (eq 34
above). The application of a spectral density function with such
an unusually weak power-law-dependent mechanism was initi-
ated in response to the experimental data of Fajer and Hyde on
spin-labeled hemoglobin40 as well as data of small nitroxides.3

The difference in frequency and correlation-time dependence
of the two proposed diffusion processes (eqs 33 and 34) is
obscured over the correlation times appropriate to the SASL
data. One advantage of the first model is that it does not require
intermolecular interactions as suggested in the second model.3

From Table 1, however, the first mechanism predicts rates that
are too small to provide an adequate relaxation rate floor on
the data at high frequencies and long correlation times. Although
the relative differences between the relaxation rates of the two
expressions (eqs 33 and 34) are small, we chose to use the
second model for simulating the data. This model was calibrated
with the isotropically moving nitroxides and used without any
modification. Relaxation rates over an even wider class of
nitroxides, frequencies, and temperatures will be necessary to
fully establish the proper empirical form of this mechanism.

Finally, and perhaps most significantly, there is potential for
improvement of the dynamics models. Rigid-body axial dynam-
ics is the crudest model that incorporates anisotropic motion.
There are clear routes for improving the underlying model. One
method, which stays within the framework of section II, is to
replace the correlation functions (eqs 10 and 26) with more
general correlation functions. As a first step, correlation func-
tions that describe nonaxial rigid-body anisotropic motion could
be used.32 Multiple time scales of motion can be included by
using generalized spectral density functions constructed with a
model-free approach.23 It is possible that the trans-gauche
isomerization model may provide a dynamics process that will
give correlation functions similar to those required for more
advanced treatments.

The stochastic Liouville equation (SLE) gives an alternative
method for the simulation of anisotropic motion, which does
not proceed through correlation functions and does not utilize
the Redfield formulation.42 The SLE is typically used to simulate
the continuous-wave EPR line shape but is adaptable to time-
domain simulation.43 The SLE approach has been generalized
to include multiple time-scale processes. For example, the
MOMD and FIM models of Freed and co-workers have been
successful for the simulation of complicated biological CW
spectra that involve anisotropy and multiple time scales of the
dynamical processes.17,19 CW EPR is not sensitive to motions
on the time scale of the spectrometer frequency (except for the
line widths), and the effects of motion on the CW line shapes
are maximal when the dynamics are on the order of the

anisotropy of the tensors. In contrast, spin-lattice relaxation
times are most sensitive to dynamic processes occurring on the
order of the spectrometer frequency.

Spin-lattice relaxation relies on nonsecular terms in the
Hamiltonians describing the interaction of the electron spin with
nuclear spins, with the magnetic fields and with the angular
momentum of the molecule. The Redfield theory relies on
dynamics to generate fluctuations in these Hamiltonians. In
contrast, the line shapes and CW spectra depend only on the
stationary or secular (and pseudosecular) terms in the Hamil-
tonians. The nonsecular terms do not directly contribute to the
Hamiltonian used to simulate CW line shapes. In CW EPR line-
shape simulations, the underlying spin-spin and spin-lattice
relaxation rates are not computed from first principles. After
simulation, the origin of the rates are sometimes analyzed in
terms of the underlying dynamics using the Redfield theory.13,44,45

The Redfield theory has been quite successful in providing an
understanding of how anisotropic dynamics affect spin-spin
relaxation rates. Now spin-lattice relaxation rates are analyzed
properly by mechanisms analogous to those used for spin-spin
relaxation rates. Typically, the fundamental spin-lattice relax-
ation rate is included in time-domain simulations as a constant.43

The resulting simulation of the time-domain spectrum then is
done to take into account the details of the effects of the pulse
sequences and distortions that alter the apparent relaxation rate
from the underlying fundamental rate.

The challenge for detailed models is not only to obtain the
proper CW line shape but also to simultaneously generate proper
spectral density functions that explain the experimentally
observed spin-lattice relaxation rates. The SLE method must
be expanded to include Hamiltonians that are fluctuating in the
rotating frame to be used to simulate time-domain spectra that
encompass dynamics processes containing motion on many time
scales. When this is accomplished, the SLE method will be a
computational platform capable of simulating both relaxation
rates and CW line shapes simultaneously for multi-time-scale
dynamics processes.

V. Conclusions

Previous work on nitroxide spin-lattice relaxation in isotropic
motional systems presented the four mechanisms considered
here (END, CSA, SR, and GSD). That work showed that the
mechanisms were adequate to explain the spin-lattice relaxation
rates for both the electron and the nitrogen nucleus of nitroxide
spin probes with motional processes ranging from 10 ps to 0.1
ms.3 The work here has successfully extended this analysis to
an anisotropic system by making the END, CSA, and SR
mechanisms anisotropic. A very simple model of anisotropic
rigid-body motion was used to develop the spectral density
functions needed to analyze the spin-lattice relaxation rates.
Despite the simplicity of the model, the agreement with the data
was almost at the experimental error. The measurement of spin-
lattice relaxation rates is complementary to CW EPR spectra
because none of the Hamiltonians used to simulate spin-lattice
relaxation rates are included in the CW EPR line-shape
simulations used to model CW spectra. Therefore, although it
is gratifying that the time scale of some of the dynamic processes
determined from fitting the spin-lattice relaxation rates are quite
similar to those obtained from simulating CW EPR line shapes,
it is not surprising that other processes were found that are much
faster than those used in line-shape simulations. More investiga-
tion is necessary to fully characterize the spin diffusion
mechanism and to develop the necessary correlation functions
that are appropriate for more detailed models of lipid dynamics.
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However, the present work does demonstrate that the relaxation
mechanisms are well understood, a multi-mechanism approach
is necessary, and a first-principles calculation of relaxation rates
can quantitatively fit the experimental data.
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